L11n420

From Knot Atlas
Revision as of 18:12, 2 September 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n419.gif

L11n419

L11n421.gif

L11n421

L11n420.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n420 at Knotilus!


Link Presentations

[edit Notes on L11n420's Link Presentations]

Planar diagram presentation X8192 X7,16,8,17 X3,10,4,11 X17,2,18,3 X18,9,19,10 X11,20,12,21 X14,6,15,5 X22,15,13,16 X6,14,1,13 X4,19,5,20 X21,12,22,7
Gauss code {1, 4, -3, -10, 7, -9}, {-2, -1, 5, 3, -6, 11}, {9, -7, 8, 2, -4, -5, 10, 6, -11, -8}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n420 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -6 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
-1        11
-3         0
-5      21 1
-7    111  1
-9    21   1
-11  211    2
-13  21     1
-15111      1
-1711       0
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n419.gif

L11n419

L11n421.gif

L11n421