L11a436
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a436's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X18,11,19,12 X14,8,15,7 X8,14,9,13 X20,15,21,16 X22,17,13,18 X16,21,17,22 X12,19,5,20 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 3, -9}, {5, -4, 6, -8, 7, -3, 9, -6, 8, -7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(v-1) (w-1) \left(2 u v w^2-u v w+2 u v-u w^2-u+v^2 w^2+v^2-2 v w^2+v w-2 v\right)}{\sqrt{u} v^{3/2} w^{3/2}}} (db) |
| Jones polynomial | (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{10} \left(-z^2\right)-a^{10} z^{-2} -2 a^{10}+3 a^8 z^4+8 a^8 z^2+4 a^8 z^{-2} +8 a^8-2 a^6 z^6-7 a^6 z^4-10 a^6 z^2-5 a^6 z^{-2} -10 a^6-a^4 z^6-2 a^4 z^4+2 a^4 z^{-2} +2 a^4+a^2 z^4+3 a^2 z^2+2 a^2} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^{13}-2 z^3 a^{13}+z a^{13}+3 z^6 a^{12}-4 z^4 a^{12}+z^2 a^{12}+6 z^7 a^{11}-10 z^5 a^{11}+8 z^3 a^{11}-5 z a^{11}+a^{11} z^{-1} +7 z^8 a^{10}-11 z^6 a^{10}+10 z^4 a^{10}-11 z^2 a^{10}-a^{10} z^{-2} +6 a^{10}+4 z^9 a^9+5 z^7 a^9-29 z^5 a^9+41 z^3 a^9-25 z a^9+5 a^9 z^{-1} +z^{10} a^8+13 z^8 a^8-39 z^6 a^8+55 z^4 a^8-45 z^2 a^8-4 a^8 z^{-2} +21 a^8+7 z^9 a^7-6 z^7 a^7-18 z^5 a^7+43 z^3 a^7-35 z a^7+9 a^7 z^{-1} +z^{10} a^6+9 z^8 a^6-32 z^6 a^6+49 z^4 a^6-44 z^2 a^6-5 a^6 z^{-2} +22 a^6+3 z^9 a^5-3 z^7 a^5-5 z^5 a^5+14 z^3 a^5-15 z a^5+5 a^5 z^{-1} +3 z^8 a^4-6 z^6 a^4+4 z^4 a^4-6 z^2 a^4-2 a^4 z^{-2} +6 a^4+2 z^7 a^3-5 z^5 a^3+2 z^3 a^3+z a^3+z^6 a^2-4 z^4 a^2+5 z^2 a^2-2 a^2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



