L11n216
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n216's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X12,3,13,4 X18,8,19,7 X14,6,15,5 X17,9,18,22 X21,17,22,16 X20,13,21,14 X6,16,7,15 X4,20,5,19 X2,9,3,10 X8,11,1,12 |
| Gauss code | {1, -10, 2, -9, 4, -8, 3, -11}, {10, -1, 11, -2, 7, -4, 8, 6, -5, -3, 9, -7, -6, 5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(t(2) t(1)^2+t(2)^2 t(1)-2 t(2) t(1)+t(1)+t(2)\right)}{t(1)^{3/2} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{13/2}+3 q^{11/2}-5 q^{9/2}+7 q^{7/2}-8 q^{5/2}+8 q^{3/2}-8 \sqrt{q}+\frac{4}{\sqrt{q}}-\frac{3}{q^{3/2}}+\frac{1}{q^{5/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^3 a^{-5} -z a^{-5} +z^5 a^{-3} +2 z^3 a^{-3} +z a^{-3} +z^5 a^{-1} -a z^3+2 z^3 a^{-1} -a z+z a^{-1} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-7} -2 z^3 a^{-7} +3 z^6 a^{-6} -7 z^4 a^{-6} +2 z^2 a^{-6} +4 z^7 a^{-5} -10 z^5 a^{-5} +6 z^3 a^{-5} -2 z a^{-5} +3 z^8 a^{-4} -7 z^6 a^{-4} +6 z^4 a^{-4} -2 z^2 a^{-4} +z^9 a^{-3} +z^7 a^{-3} -6 z^5 a^{-3} +8 z^3 a^{-3} -2 z a^{-3} +4 z^8 a^{-2} -13 z^6 a^{-2} +a^2 z^4+20 z^4 a^{-2} -2 a^2 z^2-8 z^2 a^{-2} +z^9 a^{-1} -3 z^7 a^{-1} +3 a z^5+8 z^5 a^{-1} -6 a z^3-6 z^3 a^{-1} +2 a z+2 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +z^8-3 z^6+8 z^4-6 z^2-1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



