Torus Knot Splice Base
Previous: [[<*PreviousKnot*>]]; Next: [[<*NextKnot*>]]
{{:Further <*ThisKnot*> views}}
Planar Diagram: <* PD[K] *>
<a href="../Manual/TubePlot.html"><img src="<*m*>.<*n*>_240.jpg" border=0 alt="T(<*m*>,<*n*>)"> |
The <*m(n-1)*>-Crossing Torus Knot T(<*m*>,<*n*>)<*Include["$knotaka.html"]*> Visit <a class=external href="<*KnotilusURL[K=TorusKnot[m, n]]*>">T(<*m*>,<*n*>)'s page</a> at <a class=external href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno tilus</a>! <a href="../Manual/Acknowledgement.html">Acknowledgement</a> |
<a href="../Manual/GaussCode.html">Gauss Code</a>: | <*List @@ GaussCode[K]*> |
<a href="../Manual/BR.html">Braid Representative</a>: |
<* BraidPlot[CollapseBraid[BR[K]], Mode -> "HTML"] *> |
<a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>: | <*PolyPrint[alex = Alexander[K][t], t]*> |
<a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: | <*PolyPrint[Conway[K][z], z]*> |
Other knots with the same <a
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>: |
{<*
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], Knot[n,Type,k]]; If[others === {}, "", StringJoin[(ToString[#, FormatType -> HTMLForm]<>", ")& /@ others] ]*>...} |
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>: |
<*{KnotDet[K], s=KnotSignature[K]}*> |
<a href="../Manual/Jones.html">Jones Polynomial</a>: | <*PolyPrint[J = Jones[K][q], q]*> |
Other knots (up to mirrors) with the same <a
href="../Manual/Jones.html">Jones Polynomial</a>: |
{<*
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])& ], Knot[n,Type,k]]; If[others === {}, "", StringJoin[(ToString[#, FormatType -> HTMLForm]<>", ")& /@ others] ]*>...} |
<* If[Crossings[K]<=18, Include["ColouredJones.mhtml"] ,""] *>
<a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>: | <*PolyPrint[A2Invariant[K][q], q]*> |
<a href="../Manual/Kauffman.html">Kauffman Polynomial</a>: | <*PolyPrint[Kauffman[K][a, z], {a, z}]*> |
<a href="../Manual/Vassiliev.html">V2 and V3, the type 2 and 3 Vassiliev invariants</a>: | <* {Vassiliev[2][K], Vassiliev[3][K]} *> |
<a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>.
The coefficients of the monomials trqj
are shown, along with their alternating sums χ (fixed j,
alternation over r).
The squares with yellow highlighting
are those on the "critical diagonals", where j-2r=s+1 or
j-2r=s+1, where s=<*s*> is the signature of
T(<*m*>,<*n*>). Nonzero entries off the critical diagonals (if
any exist) are highlighted in red.
<*TabularKh[Kh[K][q, t], s+{1,-1}]*>
<* ComputerTalkHeader *>
<*GraphicsBox["`1`.`2`_240.jpg", "TubePlot[TorusKnot[`1`, `2`]]", m, n]*> <*InOut["Crossings[``]", K]*> <*InOut["PD[``]", K]*> <*InOut["GaussCode[``]", K]*> <*InOut["BR[``]", K]*> <*InOut["alex = Alexander[``][t]", K]*> <*InOut["Conway[``][z]", K]*> <*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> <*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> <*InOut["J=Jones[``][q]", K]*> <*InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"
]*> <* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> <*InOut["A2Invariant[``][q]", K]*> <*InOut["Kauffman[``][a, z]", K]*> <*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> <*InOut["Kh[``][q, t]", K]*>
<a href="/~drorbn/">Dror Bar-Natan</a>: <a href="../index.html">The Knot Atlas</a>: <a href="index.html">Torus Knots</a>: <a href="#top">The Torus Knot T(<*m*>,<*n*>)</a> |
|
</body> </html>