L11n390

From Knot Atlas
Revision as of 12:12, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n389.gif

L11n389

L11n391.gif

L11n391

L11n390.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n390 at Knotilus!


Link Presentations

[edit Notes on L11n390's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X3849 X22,14,19,13 X20,10,21,9 X10,20,11,19 X14,22,15,21 X11,18,12,5 X15,2,16,3
Gauss code {1, 11, -5, -3}, {8, -7, 9, -6}, {-4, -1, 2, 5, 7, -8, -10, 4, 6, -9, -11, -2, 3, 10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n390 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-101234χ
5          11
3          11
1        1  1
-1      3    3
-3     231   0
-5    31     2
-7    21     1
-9  33       0
-11 11        0
-13 2         -2
-151          1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n389.gif

L11n389

L11n391.gif

L11n391