L11n255

From Knot Atlas
Revision as of 12:16, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n254.gif

L11n254

L11n256.gif

L11n256

L11n255.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n255 at Knotilus!


Link Presentations

[edit Notes on L11n255's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X11,16,12,17 X21,18,22,19 X13,20,14,21 X19,12,20,13 X17,22,18,9 X15,8,16,5 X7,14,8,15 X2536 X9,1,10,4
Gauss code {1, -10, -2, 11}, {10, -1, -9, 8}, {-11, 2, -3, 6, -5, 9, -8, 3, -7, 4, -6, 5, -4, 7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n255 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -4 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
1         11
-1        1 -1
-3       51 4
-5      54  -1
-7     72   5
-9    45    1
-11   77     0
-13  35      2
-15 36       -3
-17 3        3
-193         -3
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n254.gif

L11n254

L11n256.gif

L11n256