L11a366

From Knot Atlas
Revision as of 12:18, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a365.gif

L11a365

L11a367.gif

L11a367

L11a366.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a366 at Knotilus!


Link Presentations

[edit Notes on L11a366's Link Presentations]

Planar diagram presentation X12,1,13,2 X14,3,15,4 X16,5,17,6 X6,11,7,12 X18,8,19,7 X22,18,11,17 X20,10,21,9 X8,20,9,19 X10,22,1,21 X4,13,5,14 X2,15,3,16
Gauss code {1, -11, 2, -10, 3, -4, 5, -8, 7, -9}, {4, -1, 10, -2, 11, -3, 6, -5, 8, -7, 9, -6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a366 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
12           1-1
10          2 2
8         41 -3
6        52  3
4       64   -2
2      75    2
0     57     2
-2    56      -1
-4   36       3
-6  14        -3
-8 13         2
-10 1          -1
-121           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a365.gif

L11a365

L11a367.gif

L11a367