L11a279

From Knot Atlas
Revision as of 12:19, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a278.gif

L11a278

L11a280.gif

L11a280

L11a279.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a279 at Knotilus!


Link Presentations

[edit Notes on L11a279's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X8,9,1,10 X20,13,21,14 X14,6,15,5 X4,20,5,19 X18,8,19,7 X6,16,7,15 X22,17,9,18 X16,21,17,22
Gauss code {1, -2, 3, -7, 6, -9, 8, -4}, {4, -1, 2, -3, 5, -6, 9, -11, 10, -8, 7, -5, 11, -10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a279 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
6           11
4          2 -2
2         41 3
0        42  -2
-2       84   4
-4      76    -1
-6     76     1
-8    57      2
-10   47       -3
-12  25        3
-14 14         -3
-16 2          2
-181           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a278.gif

L11a278

L11a280.gif

L11a280