L11a362
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a362's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X14,4,15,3 X22,14,11,13 X2,11,3,12 X4,22,5,21 X20,10,21,9 X16,6,17,5 X18,8,19,7 X6,18,7,17 X8,20,9,19 X10,16,1,15 |
| Gauss code | {1, -4, 2, -5, 7, -9, 8, -10, 6, -11}, {4, -1, 3, -2, 11, -7, 9, -8, 10, -6, 5, -3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(2)^3 t(1)^4-t(2)^2 t(1)^4+t(2)^4 t(1)^3-4 t(2)^3 t(1)^3+3 t(2)^2 t(1)^3-t(2) t(1)^3-t(2)^4 t(1)^2+3 t(2)^3 t(1)^2-5 t(2)^2 t(1)^2+3 t(2) t(1)^2-t(1)^2-t(2)^3 t(1)+3 t(2)^2 t(1)-4 t(2) t(1)+t(1)-t(2)^2+t(2)}{t(1)^2 t(2)^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{23/2}-3 q^{21/2}+5 q^{19/2}-8 q^{17/2}+10 q^{15/2}-11 q^{13/2}+10 q^{11/2}-9 q^{9/2}+6 q^{7/2}-4 q^{5/2}+2 q^{3/2}-\sqrt{q}} (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^7 a^{-5} -z^7 a^{-7} +z^5 a^{-3} -4 z^5 a^{-5} -4 z^5 a^{-7} +z^5 a^{-9} +4 z^3 a^{-3} -3 z^3 a^{-5} -4 z^3 a^{-7} +3 z^3 a^{-9} +3 z a^{-3} +z a^{-5} -2 z a^{-7} +z a^{-9} + a^{-5} z^{-1} - a^{-7} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{-14} -z^2 a^{-14} +3 z^5 a^{-13} -4 z^3 a^{-13} +z a^{-13} +4 z^6 a^{-12} -4 z^4 a^{-12} +4 z^7 a^{-11} -3 z^5 a^{-11} -2 z^3 a^{-11} +2 z a^{-11} +4 z^8 a^{-10} -7 z^6 a^{-10} +6 z^4 a^{-10} -z^2 a^{-10} +3 z^9 a^{-9} -7 z^7 a^{-9} +9 z^5 a^{-9} -6 z^3 a^{-9} +z a^{-9} +z^{10} a^{-8} +2 z^8 a^{-8} -13 z^6 a^{-8} +16 z^4 a^{-8} -6 z^2 a^{-8} +5 z^9 a^{-7} -19 z^7 a^{-7} +25 z^5 a^{-7} -17 z^3 a^{-7} +6 z a^{-7} - a^{-7} z^{-1} +z^{10} a^{-6} -11 z^6 a^{-6} +16 z^4 a^{-6} -8 z^2 a^{-6} + a^{-6} +2 z^9 a^{-5} -7 z^7 a^{-5} +5 z^5 a^{-5} -2 z^3 a^{-5} +3 z a^{-5} - a^{-5} z^{-1} +2 z^8 a^{-4} -9 z^6 a^{-4} +11 z^4 a^{-4} -4 z^2 a^{-4} +z^7 a^{-3} -5 z^5 a^{-3} +7 z^3 a^{-3} -3 z a^{-3} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



