L11n213

From Knot Atlas
Revision as of 12:20, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n212.gif

L11n212

L11n214.gif

L11n214

L11n213.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n213 at Knotilus!


Link Presentations

[edit Notes on L11n213's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X14,5,15,6 X9,18,10,19 X17,22,18,9 X21,1,22,8 X20,15,21,16 X7,16,8,17 X4,13,5,14 X6,20,7,19
Gauss code {1, -2, 3, -10, 4, -11, -9, 7}, {-5, -1, 2, -3, 10, -4, 8, 9, -6, 5, 11, -8, -7, 6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n213 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -5 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-4         22
-6        110
-8       31 2
-10      21  -1
-12     43   1
-14    33    0
-16   23     -1
-18  13      2
-20 12       -1
-22 1        1
-241         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n212.gif

L11n212

L11n214.gif

L11n214