L11n214

From Knot Atlas
Revision as of 12:20, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n213.gif

L11n213

L11n215.gif

L11n215

L11n214.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n214 at Knotilus!


Link Presentations

[edit Notes on L11n214's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X9,18,10,19 X17,22,18,9 X21,1,22,8 X20,13,21,14 X5,14,6,15 X7,16,8,17 X15,6,16,7 X4,20,5,19
Gauss code {1, -2, 3, -11, -8, 10, -9, 6}, {-4, -1, 2, -3, 7, 8, -10, 9, -5, 4, 11, -7, -6, 5}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n214 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -5 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-4         22
-6        21-1
-8       51 4
-10      42  -2
-12     65   1
-14    55    0
-16   45     -1
-18  25      3
-20 14       -3
-22 2        2
-241         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n213.gif

L11n213

L11n215.gif

L11n215