L11a388

From Knot Atlas
Revision as of 12:21, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a387.gif

L11a387

L11a389.gif

L11a389

L11a388.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a388 at Knotilus!


Link Presentations

[edit Notes on L11a388's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X18,11,19,12 X22,15,9,16 X20,17,21,18 X16,21,17,22 X12,19,13,20 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -4}, {11, -2, 5, -9, 4, -3, 6, -8, 7, -5, 9, -7, 8, -6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a388 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -4 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-3           11
-5          31-2
-7         4  4
-9        63  -3
-11       104   6
-13      89    1
-15     87     1
-17    58      3
-19   58       -3
-21  15        4
-23 15         -4
-25 1          1
-271           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a387.gif

L11a387

L11a389.gif

L11a389