L11n106

From Knot Atlas
Revision as of 12:21, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n105.gif

L11n105

L11n107.gif

L11n107

L11n106.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n106 at Knotilus!


Link Presentations

[edit Notes on L11n106's Link Presentations]

Planar diagram presentation X6172 X12,3,13,4 X7,16,8,17 X17,22,18,5 X13,18,14,19 X9,21,10,20 X19,14,20,15 X21,9,22,8 X15,10,16,11 X2536 X4,11,1,12
Gauss code {1, -10, 2, -11}, {10, -1, -3, 8, -6, 9, 11, -2, -5, 7, -9, 3, -4, 5, -7, 6, -8, 4}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n106 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
0           11
-2            0
-4        121 0
-6       111  1
-8      221   -1
-10     321    2
-12    241     1
-14   221      1
-16  121       0
-18 12         -1
-20 1          1
-221           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n105.gif

L11n105

L11n107.gif

L11n107