L11n409

From Knot Atlas
Revision as of 12:24, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n408.gif

L11n408

L11n410.gif

L11n410

L11n409.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n409 at Knotilus!


Link Presentations

[edit Notes on L11n409's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X7,16,8,17 X22,17,19,18 X20,12,21,11 X10,20,11,19 X18,21,5,22 X9,14,10,15 X15,8,16,9 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {6, -5, 7, -4}, {10, -1, -3, 9, -8, -6, 5, -2, 11, 8, -9, 3, 4, -7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n409 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-101234χ
9         11
7        3 -3
5       61 5
3      53  -2
1     96   3
-1    89    1
-3   55     0
-5  38      5
-7 25       -3
-9 3        3
-112         -2
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n408.gif

L11n408

L11n410.gif

L11n410