L11a493

From Knot Atlas
Revision as of 12:26, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a492.gif

L11a492

L11a494.gif

L11a494

L11a493.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a493 at Knotilus!


Link Presentations

[edit Notes on L11a493's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X10,4,11,3 X18,12,5,11 X20,10,21,9 X22,16,19,15 X14,22,15,21 X2,14,3,13 X8,20,9,19
Gauss code {1, -10, 5, -3}, {11, -7, 9, -8}, {4, -1, 2, -11, 7, -5, 6, -4, 10, -9, 8, -2, 3, -6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a493 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(1)-1) (t(3)-1) \left(t(3)^2-t(3)+1\right) \left(t(2) t(3)^2-2 t(2) t(3)+2 t(3)-1\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}}} (db)
Jones polynomial (db)
Signature 4 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-4} -z^6 a^{-2} +5 z^6 a^{-4} -2 z^6 a^{-6} -3 z^4 a^{-2} +10 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} -2 z^2 a^{-2} +9 z^2 a^{-4} -9 z^2 a^{-6} +2 z^2 a^{-8} + a^{-2} +2 a^{-4} -5 a^{-6} +2 a^{-8} + a^{-2} z^{-2} -2 a^{-4} z^{-2} + a^{-6} z^{-2} } (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^{10} a^{-4} +2 z^{10} a^{-6} +5 z^9 a^{-3} +14 z^9 a^{-5} +9 z^9 a^{-7} +4 z^8 a^{-2} +12 z^8 a^{-4} +24 z^8 a^{-6} +16 z^8 a^{-8} +z^7 a^{-1} -11 z^7 a^{-3} -26 z^7 a^{-5} +2 z^7 a^{-7} +16 z^7 a^{-9} -14 z^6 a^{-2} -56 z^6 a^{-4} -76 z^6 a^{-6} -24 z^6 a^{-8} +10 z^6 a^{-10} -3 z^5 a^{-1} -2 z^5 a^{-3} -11 z^5 a^{-5} -39 z^5 a^{-7} -23 z^5 a^{-9} +4 z^5 a^{-11} +17 z^4 a^{-2} +66 z^4 a^{-4} +66 z^4 a^{-6} +8 z^4 a^{-8} -8 z^4 a^{-10} +z^4 a^{-12} +3 z^3 a^{-1} +14 z^3 a^{-3} +32 z^3 a^{-5} +34 z^3 a^{-7} +13 z^3 a^{-9} -8 z^2 a^{-2} -29 z^2 a^{-4} -25 z^2 a^{-6} +4 z^2 a^{-10} -z a^{-1} -3 z a^{-3} -11 z a^{-5} -13 z a^{-7} -4 z a^{-9} +4 a^{-4} +5 a^{-6} + a^{-8} - a^{-10} -2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} } (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-3-2-1012345678χ
21           11
19          3 -3
17         71 6
15        93  -6
13       117   4
11      1411    -3
9     109     1
7    814      6
5   710       -3
3  310        7
1 15         -4
-1 3          3
-31           -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=5}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{8}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{10}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=6} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=8}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a492.gif

L11a492

L11a494.gif

L11a494