L11a493
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a493's Link Presentations]
Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X10,4,11,3 X18,12,5,11 X20,10,21,9 X22,16,19,15 X14,22,15,21 X2,14,3,13 X8,20,9,19 |
Gauss code | {1, -10, 5, -3}, {11, -7, 9, -8}, {4, -1, 2, -11, 7, -5, 6, -4, 10, -9, 8, -2, 3, -6} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(1)-1) (t(3)-1) \left(t(3)^2-t(3)+1\right) \left(t(2) t(3)^2-2 t(2) t(3)+2 t(3)-1\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{5/2}}} (db) |
Jones polynomial | (db) |
Signature | 4 (db) |
HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-4} -z^6 a^{-2} +5 z^6 a^{-4} -2 z^6 a^{-6} -3 z^4 a^{-2} +10 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} -2 z^2 a^{-2} +9 z^2 a^{-4} -9 z^2 a^{-6} +2 z^2 a^{-8} + a^{-2} +2 a^{-4} -5 a^{-6} +2 a^{-8} + a^{-2} z^{-2} -2 a^{-4} z^{-2} + a^{-6} z^{-2} } (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^{10} a^{-4} +2 z^{10} a^{-6} +5 z^9 a^{-3} +14 z^9 a^{-5} +9 z^9 a^{-7} +4 z^8 a^{-2} +12 z^8 a^{-4} +24 z^8 a^{-6} +16 z^8 a^{-8} +z^7 a^{-1} -11 z^7 a^{-3} -26 z^7 a^{-5} +2 z^7 a^{-7} +16 z^7 a^{-9} -14 z^6 a^{-2} -56 z^6 a^{-4} -76 z^6 a^{-6} -24 z^6 a^{-8} +10 z^6 a^{-10} -3 z^5 a^{-1} -2 z^5 a^{-3} -11 z^5 a^{-5} -39 z^5 a^{-7} -23 z^5 a^{-9} +4 z^5 a^{-11} +17 z^4 a^{-2} +66 z^4 a^{-4} +66 z^4 a^{-6} +8 z^4 a^{-8} -8 z^4 a^{-10} +z^4 a^{-12} +3 z^3 a^{-1} +14 z^3 a^{-3} +32 z^3 a^{-5} +34 z^3 a^{-7} +13 z^3 a^{-9} -8 z^2 a^{-2} -29 z^2 a^{-4} -25 z^2 a^{-6} +4 z^2 a^{-10} -z a^{-1} -3 z a^{-3} -11 z a^{-5} -13 z a^{-7} -4 z a^{-9} +4 a^{-4} +5 a^{-6} + a^{-8} - a^{-10} -2 a^{-3} z^{-1} -2 a^{-5} z^{-1} + a^{-2} z^{-2} +2 a^{-4} z^{-2} + a^{-6} z^{-2} } (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|