L10a7

From Knot Atlas
Revision as of 12:28, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10a6.gif

L10a6

L10a8.gif

L10a8

L10a7.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a7 at Knotilus!


Link Presentations

[edit Notes on L10a7's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X4,19,1,20 X14,12,15,11 X8493 X12,5,13,6 X20,13,5,14 X16,10,17,9 X10,16,11,15 X2,18,3,17
Gauss code {1, -10, 5, -3}, {6, -1, 2, -5, 8, -9, 4, -6, 7, -4, 9, -8, 10, -2, 3, -7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L10a7 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-2) (t(2)-1) (2 t(2)-1)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{9/2}-\frac{3}{q^{9/2}}-4 q^{7/2}+\frac{5}{q^{7/2}}+6 q^{5/2}-\frac{9}{q^{5/2}}-9 q^{3/2}+\frac{11}{q^{3/2}}+\frac{1}{q^{11/2}}+11 \sqrt{q}-\frac{12}{\sqrt{q}} }[/math] (db)
Signature -1 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^5 (-z)+2 a^3 z^3+z^3 a^{-3} +2 a^3 z+a^3 z^{-1} - a^{-3} z^{-1} -a z^5-z^5 a^{-1} -a z^3-z^3 a^{-1} -2 a z-2 a z^{-1} +z a^{-1} +2 a^{-1} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ -2 a z^9-2 z^9 a^{-1} -4 a^2 z^8-5 z^8 a^{-2} -9 z^8-4 a^3 z^7-2 a z^7-2 z^7 a^{-1} -4 z^7 a^{-3} -4 a^4 z^6+4 a^2 z^6+15 z^6 a^{-2} -z^6 a^{-4} +24 z^6-3 a^5 z^5+8 a z^5+17 z^5 a^{-1} +12 z^5 a^{-3} -a^6 z^4+3 a^4 z^4-2 a^2 z^4-11 z^4 a^{-2} +2 z^4 a^{-4} -19 z^4+4 a^5 z^3+7 a^3 z^3-a z^3-11 z^3 a^{-1} -7 z^3 a^{-3} +a^6 z^2+a^2 z^2+2 z^2 a^{-2} +4 z^2-2 a^5 z-5 a^3 z-6 a z-4 z a^{-1} -z a^{-3} +1+a^3 z^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-5-4-3-2-1012345χ
10          1-1
8         3 3
6        31 -2
4       63  3
2      53   -2
0     76    1
-2    67     1
-4   35      -2
-6  26       4
-8 13        -2
-10 2         2
-121          -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-2 }[/math] [math]\displaystyle{ i=0 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a6.gif

L10a6

L10a8.gif

L10a8