L11a381

From Knot Atlas
Revision as of 12:28, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a380.gif

L11a380

L11a382.gif

L11a382

L11a381.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a381 at Knotilus!


Link Presentations

[edit Notes on L11a381's Link Presentations]

Planar diagram presentation X12,1,13,2 X20,13,21,14 X10,21,1,22 X14,4,15,3 X18,6,19,5 X6,11,7,12 X22,7,11,8 X4,16,5,15 X8,18,9,17 X16,10,17,9 X2,20,3,19
Gauss code {1, -11, 4, -8, 5, -6, 7, -9, 10, -3}, {6, -1, 2, -4, 8, -10, 9, -5, 11, -2, 3, -7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a381 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-10123456χ
14           11
12          3 -3
10         71 6
8        103  -7
6       137   6
4      1411    -3
2     1312     1
0    1015      5
-2   712       -5
-4  310        7
-6 17         -6
-8 3          3
-101           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a380.gif

L11a380

L11a382.gif

L11a382