L11a259

From Knot Atlas
Revision as of 12:29, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a258.gif

L11a258

L11a260.gif

L11a260

L11a259.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a259 at Knotilus!


Link Presentations

[edit Notes on L11a259's Link Presentations]

Planar diagram presentation X10,1,11,2 X14,5,15,6 X12,3,13,4 X18,8,19,7 X20,15,21,16 X22,17,9,18 X16,21,17,22 X4,13,5,14 X6,20,7,19 X2,9,3,10 X8,11,1,12
Gauss code {1, -10, 3, -8, 2, -9, 4, -11}, {10, -1, 11, -3, 8, -2, 5, -7, 6, -4, 9, -5, 7, -6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a259 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -5 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
0           11
-2          1 -1
-4         41 3
-6        42  -2
-8       53   2
-10      54    -1
-12     65     1
-14    46      2
-16   35       -2
-18  14        3
-20 13         -2
-22 1          1
-241           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a258.gif

L11a258

L11a260.gif

L11a260