L11n392

From Knot Atlas
Revision as of 12:32, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n391.gif

L11n391

L11n393.gif

L11n393

L11n392.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n392 at Knotilus!


Link Presentations

[edit Notes on L11n392's Link Presentations]

Planar diagram presentation X6172 X16,7,17,8 X4,17,1,18 X5,12,6,13 X8493 X22,14,19,13 X20,10,21,9 X10,20,11,19 X14,22,15,21 X11,18,12,5 X2,16,3,15
Gauss code {1, -11, 5, -3}, {8, -7, 9, -6}, {-4, -1, 2, -5, 7, -8, -10, 4, 6, -9, 11, -2, 3, 10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n392 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-101234χ
9         33
7        52-3
5       81 7
3      65  -1
1     118   3
-1    78    1
-3   69     -3
-5  37      4
-7 16       -5
-9 3        3
-111         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n391.gif

L11n391

L11n393.gif

L11n393