L11a426

From Knot Atlas
Revision as of 12:33, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a425.gif

L11a425

L11a427.gif

L11a427

L11a426.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a426 at Knotilus!


Link Presentations

[edit Notes on L11a426's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X14,5,15,6 X20,11,21,12 X22,17,11,18 X16,21,17,22 X10,13,5,14 X8,20,9,19 X18,8,19,7 X2,9,3,10 X4,16,1,15
Gauss code {1, -10, 2, -11}, {3, -1, 9, -8, 10, -7}, {4, -2, 7, -3, 11, -6, 5, -9, 8, -4, 6, -5}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a426 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
7           11
5          3 -3
3         71 6
1        94  -5
-1       146   8
-3      1211    -1
-5     1412     2
-7    913      4
-9   713       -6
-11  39        6
-13 17         -6
-15 3          3
-171           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a425.gif

L11a425

L11a427.gif

L11a427