L10n99
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n99's Link Presentations]
| Planar diagram presentation | X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X11,18,12,19 X15,20,16,17 X19,16,20,9 X17,12,18,13 X2536 X9,1,10,4 |
| Gauss code | {1, -9, -2, 10}, {9, -1, -3, 4}, {-8, 5, -7, 6}, {-10, 2, -5, 8, -4, 3, -6, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(x-1) \left(u v w x-u v w-2 u v x-u w x+u x-v w x+v x+2 w x+x^2-x\right)}{\sqrt{u} \sqrt{v} \sqrt{w} x^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{7/2}+2 q^{5/2}-6 q^{3/2}+7 \sqrt{q}-\frac{9}{\sqrt{q}}+\frac{7}{q^{3/2}}-\frac{9}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{3}{q^{9/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^{-3} +2 a^5 z^{-1} +a^3 z^3-3 a^3 z^{-3} -3 a^3 z-6 a^3 z^{-1} -z a^{-3} - a^{-3} z^{-1} -a z^5-a z^3+3 a z^{-3} +2 z^3 a^{-1} - a^{-1} z^{-3} +2 a z+5 a z^{-1} +2 z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 6 a^5 z^3-a^5 z^{-3} -10 a^5 z+6 a^5 z^{-1} +3 a^4 z^6-6 a^4 z^4+15 a^4 z^2+3 a^4 z^{-2} -13 a^4+4 a^3 z^7-9 a^3 z^5+z^5 a^{-3} +19 a^3 z^3-3 z^3 a^{-3} -3 a^3 z^{-3} -23 a^3 z+3 z a^{-3} +14 a^3 z^{-1} - a^{-3} z^{-1} +a^2 z^8+8 a^2 z^6+2 z^6 a^{-2} -24 a^2 z^4-3 z^4 a^{-2} +33 a^2 z^2+6 a^2 z^{-2} -24 a^2+ a^{-2} +7 a z^7+3 z^7 a^{-1} -15 a z^5-5 z^5 a^{-1} +19 a z^3+3 z^3 a^{-1} -3 a z^{-3} - a^{-1} z^{-3} -20 a z-4 z a^{-1} +12 a z^{-1} +3 a^{-1} z^{-1} +z^8+7 z^6-21 z^4+18 z^2+3 z^{-2} -11 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



