L11n344

From Knot Atlas
Revision as of 11:56, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n343.gif

L11n343

L11n345.gif

L11n345

L11n344.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n344 at Knotilus!


Link Presentations

[edit Notes on L11n344's Link Presentations]

Planar diagram presentation X6172 X2,16,3,15 X3,10,4,11 X5,14,6,15 X11,22,12,13 X13,12,14,5 X21,1,22,4 X20,17,21,18 X16,7,17,8 X8,20,9,19 X18,10,19,9
Gauss code {1, -2, -3, 7}, {-4, -1, 9, -10, 11, 3, -5, 6}, {-6, 4, 2, -9, 8, -11, 10, -8, -7, 5}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n344 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , , , ...) (db)
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 q-3+7 q^{-1} -9 q^{-2} +11 q^{-3} -9 q^{-4} +9 q^{-5} -6 q^{-6} +3 q^{-7} - q^{-8} } (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
3         22
1        1 -1
-1       62 4
-3      64  -2
-5     53   2
-7    46    2
-9   55     0
-11  25      3
-13 14       -3
-15 2        2
-171         -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-6}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n343.gif

L11n343

L11n345.gif

L11n345