L10n11
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n11's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X15,1,16,4 X5,12,6,13 X3849 X9,16,10,17 X17,20,18,5 X11,19,12,18 X19,11,20,10 X2,14,3,13 |
| Gauss code | {1, -10, -5, 3}, {-4, -1, 2, 5, -6, 9, -8, 4, 10, -2, -3, 6, -7, 8, -9, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1)^3}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^{3/2}+3 \sqrt{q}-\frac{5}{\sqrt{q}}+\frac{5}{q^{3/2}}-\frac{6}{q^{5/2}}+\frac{5}{q^{7/2}}-\frac{3}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^5+2 z a^5+a^5 z^{-1} -z^5 a^3-4 z^3 a^3-7 z a^3-3 a^3 z^{-1} +3 z^3 a+7 z a+4 a z^{-1} -2 z a^{-1} -2 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^7 z^5-3 a^7 z^3+a^7 z+2 a^6 z^6-6 a^6 z^4+4 a^6 z^2-a^6+2 a^5 z^7-5 a^5 z^5+3 a^5 z^3-2 a^5 z+a^5 z^{-1} +a^4 z^8-6 a^4 z^4+9 a^4 z^2-3 a^4+4 a^3 z^7-13 a^3 z^5+20 a^3 z^3-13 a^3 z+3 a^3 z^{-1} +a^2 z^8-a^2 z^6+5 a^2 z^2-3 a^2+2 a z^7-7 a z^5+17 a z^3+3 z^3 a^{-1} -15 a z-5 z a^{-1} +4 a z^{-1} +2 a^{-1} z^{-1} +z^6-2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



