L10a7
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a7's Link Presentations]
| Planar diagram presentation | X6172 X18,7,19,8 X4,19,1,20 X14,12,15,11 X8493 X12,5,13,6 X20,13,5,14 X16,10,17,9 X10,16,11,15 X2,18,3,17 |
| Gauss code | {1, -10, 5, -3}, {6, -1, 2, -5, 8, -9, 4, -6, 7, -4, 9, -8, 10, -2, 3, -7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-2) (t(2)-1) (2 t(2)-1)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-\frac{3}{q^{9/2}}-4 q^{7/2}+\frac{5}{q^{7/2}}+6 q^{5/2}-\frac{9}{q^{5/2}}-9 q^{3/2}+\frac{11}{q^{3/2}}+\frac{1}{q^{11/2}}+11 \sqrt{q}-\frac{12}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 (-z)+2 a^3 z^3+z^3 a^{-3} +2 a^3 z+a^3 z^{-1} - a^{-3} z^{-1} -a z^5-z^5 a^{-1} -a z^3-z^3 a^{-1} -2 a z-2 a z^{-1} +z a^{-1} +2 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 a z^9-2 z^9 a^{-1} -4 a^2 z^8-5 z^8 a^{-2} -9 z^8-4 a^3 z^7-2 a z^7-2 z^7 a^{-1} -4 z^7 a^{-3} -4 a^4 z^6+4 a^2 z^6+15 z^6 a^{-2} -z^6 a^{-4} +24 z^6-3 a^5 z^5+8 a z^5+17 z^5 a^{-1} +12 z^5 a^{-3} -a^6 z^4+3 a^4 z^4-2 a^2 z^4-11 z^4 a^{-2} +2 z^4 a^{-4} -19 z^4+4 a^5 z^3+7 a^3 z^3-a z^3-11 z^3 a^{-1} -7 z^3 a^{-3} +a^6 z^2+a^2 z^2+2 z^2 a^{-2} +4 z^2-2 a^5 z-5 a^3 z-6 a z-4 z a^{-1} -z a^{-3} +1+a^3 z^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



