L11a332
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a332's Link Presentations]
Planar diagram presentation | X10,1,11,2 X2,11,3,12 X12,3,13,4 X20,5,21,6 X22,13,9,14 X18,21,19,22 X16,7,17,8 X14,17,15,18 X8,9,1,10 X6,15,7,16 X4,19,5,20 |
Gauss code | {1, -2, 3, -11, 4, -10, 7, -9}, {9, -1, 2, -3, 5, -8, 10, -7, 8, -6, 11, -4, 6, -5} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -7 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{18} z^4+4 a^{17} z^5-3 a^{17} z^3+7 a^{16} z^6-7 a^{16} z^4+a^{16} z^2+8 a^{15} z^7-8 a^{15} z^5-a^{15} z^3+2 a^{15} z+7 a^{14} z^8-8 a^{14} z^6+a^{14} z^4+4 a^{13} z^9-12 a^{13} z^5+7 a^{13} z^3+a^{13} z+a^{12} z^{10}+10 a^{12} z^8-37 a^{12} z^6+42 a^{12} z^4-18 a^{12} z^2+7 a^{11} z^9-20 a^{11} z^7+18 a^{11} z^5-12 a^{11} z^3+7 a^{11} z+a^{10} z^{10}+5 a^{10} z^8-29 a^{10} z^6+38 a^{10} z^4-16 a^{10} z^2+3 a^9 z^9-11 a^9 z^7+13 a^9 z^5-9 a^9 z^3+3 a^9 z+a^9 z^{-1} +2 a^8 z^8-7 a^8 z^6+5 a^8 z^4+a^8 z^2-a^8+a^7 z^7-5 a^7 z^5+8 a^7 z^3-5 a^7 z+a^7 z^{-1} } (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|