L11n180

From Knot Atlas
Revision as of 12:07, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n179.gif

L11n179

L11n181.gif

L11n181

L11n180.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n180 at Knotilus!


Link Presentations

[edit Notes on L11n180's Link Presentations]

Planar diagram presentation X8192 X3,10,4,11 X5,14,6,15 X16,8,17,7 X22,18,7,17 X15,13,16,12 X9,20,10,21 X11,19,12,18 X13,6,14,1 X19,4,20,5 X2,21,3,22
Gauss code {1, -11, -2, 10, -3, 9}, {4, -1, -7, 2, -8, 6, -9, 3, -6, -4, 5, 8, -10, 7, 11, -5}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n180 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-101234χ
6          11
4         1 -1
2        11 0
0      121  0
-2     121   0
-4     12    1
-6   121     0
-8    1      1
-10  11       0
-121          1
-141          1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n179.gif

L11n179

L11n181.gif

L11n181