L11a298

From Knot Atlas
Revision as of 12:37, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a297.gif

L11a297

L11a299.gif

L11a299

L11a298.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a298 at Knotilus!


Link Presentations

[edit Notes on L11a298's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,3,13,4 X18,8,19,7 X16,6,17,5 X22,13,9,14 X20,15,21,16 X6,18,7,17 X14,21,15,22 X4,20,5,19 X2,9,3,10 X8,11,1,12
Gauss code {1, -10, 2, -9, 4, -7, 3, -11}, {10, -1, 11, -2, 5, -8, 6, -4, 7, -3, 9, -6, 8, -5}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a298 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
10           11
8          2 -2
6         41 3
4        42  -2
2       64   2
0      76    -1
-2     44     0
-4    47      3
-6   34       -1
-8  14        3
-10 13         -2
-12 1          1
-141           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a297.gif

L11a297

L11a299.gif

L11a299