L11n427
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n427's Link Presentations]
| Planar diagram presentation | X8192 X11,18,12,19 X3,10,4,11 X19,2,20,3 X7,16,8,17 X20,9,21,10 X17,12,18,7 X22,16,13,15 X14,6,15,5 X4,14,5,13 X6,21,1,22 |
| Gauss code | {1, 4, -3, -10, 9, -11}, {-5, -1, 6, 3, -2, 7}, {10, -9, 8, 5, -7, 2, -4, -6, 11, -8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1)^2 t(2) t(3)^3-t(1) t(2) t(3)^3+t(1)^2 t(2)^2 t(3)^2-t(1) t(2)^2 t(3)^2-2 t(1) t(3)^2-2 t(1)^2 t(2) t(3)^2+4 t(1) t(2) t(3)^2-t(2) t(3)^2+t(3)^2-t(1)^2 t(2)^2 t(3)+2 t(1) t(2)^2 t(3)+t(1) t(3)+t(1)^2 t(2) t(3)-4 t(1) t(2) t(3)+2 t(2) t(3)-t(3)+t(1) t(2)-t(2)}{t(1) t(2) t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 2 q^{-7} -3 q^{-6} +7 q^{-5} -8 q^{-4} +10 q^{-3} -q^2-9 q^{-2} +3 q+8 q^{-1} -5 }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^8 z^{-2} +a^8-a^6 z^4-4 a^6 z^2-2 a^6 z^{-2} -5 a^6+a^4 z^6+4 a^4 z^4+6 a^4 z^2+a^4 z^{-2} +4 a^4+a^2 z^6+3 a^2 z^4+2 a^2 z^2-z^4-2 z^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 3 a^8 z^4-8 a^8 z^2-a^8 z^{-2} +6 a^8+a^7 z^7-a^7 z^5+3 a^7 z^3-6 a^7 z+2 a^7 z^{-1} +2 a^6 z^8-7 a^6 z^6+20 a^6 z^4-25 a^6 z^2-2 a^6 z^{-2} +12 a^6+a^5 z^9-a^5 z^5+7 a^5 z^3-8 a^5 z+2 a^5 z^{-1} +5 a^4 z^8-15 a^4 z^6+27 a^4 z^4-22 a^4 z^2-a^4 z^{-2} +8 a^4+a^3 z^9+3 a^3 z^7-10 a^3 z^5+11 a^3 z^3-3 a^3 z+3 a^2 z^8-5 a^2 z^6+3 a^2 z^4-2 a^2 z^2+a^2+4 a z^7-9 a z^5+z^5 a^{-1} +5 a z^3-2 z^3 a^{-1} -a z+3 z^6-7 z^4+3 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



