L11n406
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n406's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X11,22,12,19 X10,4,11,3 X5,21,6,20 X21,5,22,18 X19,12,20,13 X14,9,15,10 X2,14,3,13 X8,15,9,16 |
| Gauss code | {1, -10, 5, -3}, {-8, 6, -7, 4}, {-6, -1, 2, -11, 9, -5, -4, 8, 10, -9, 11, -2, 3, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ 0 }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^3-q^2+2 q+ q^{-1} +2 q^{-4} - q^{-5} + q^{-6} - q^{-7} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^2 a^6-2 a^6+z^4 a^4+4 z^2 a^4+4 a^4+a^2 z^{-2} -z^4-4 z^2-2 z^{-2} -4+z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^7 z^7-6 a^7 z^5+10 a^7 z^3-4 a^7 z+a^6 z^8-6 a^6 z^6+11 a^6 z^4-10 a^6 z^2+4 a^6+2 a^5 z^7-12 a^5 z^5+18 a^5 z^3-8 a^5 z+2 a^4 z^8-14 a^4 z^6+30 a^4 z^4-28 a^4 z^2+8 a^4+a^3 z^9-6 a^3 z^7+8 a^3 z^5-2 a^3 z^3+2 a^2 z^8-13 a^2 z^6+z^6 a^{-2} +22 a^2 z^4-5 z^4 a^{-2} -12 a^2 z^2+6 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -4 a^{-2} +a z^9-6 a z^7+z^7 a^{-1} +10 a z^5-4 z^5 a^{-1} -10 a z^3+8 a z+4 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +z^8-4 z^6-2 z^4+12 z^2+2 z^{-2} -7 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



