L10n20
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n20's Link Presentations]
| Planar diagram presentation | X6172 X18,7,19,8 X4,19,1,20 X11,14,12,15 X8493 X5,13,6,12 X13,5,14,20 X9,16,10,17 X15,10,16,11 X2,18,3,17 |
| Gauss code | {1, -10, 5, -3}, {-6, -1, 2, -5, -8, 9, -4, 6, -7, 4, -9, 8, 10, -2, 3, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2-3 t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{2}{q^{9/2}}-q^{7/2}+\frac{4}{q^{7/2}}+2 q^{5/2}-\frac{6}{q^{5/2}}-5 q^{3/2}+\frac{7}{q^{3/2}}+6 \sqrt{q}-\frac{7}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^{-1} +z^3 a^3-z a^3-2 a^3 z^{-1} -z^5 a-2 z^3 a-z a+a z^{-1} +2 z^3 a^{-1} +3 z a^{-1} + a^{-1} z^{-1} -z a^{-3} - a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^2 z^8-z^8-2 a^3 z^7-4 a z^7-2 z^7 a^{-1} -a^4 z^6-a^2 z^6-2 z^6 a^{-2} -2 z^6+3 a^3 z^5+5 a z^5+z^5 a^{-1} -z^5 a^{-3} -2 a^4 z^4-2 a^2 z^4+4 z^4 a^{-2} +4 z^4-3 a^5 z^3-9 a^3 z^3-3 a z^3+6 z^3 a^{-1} +3 z^3 a^{-3} +2 a^4 z^2+6 a^2 z^2-z^2 a^{-2} +3 z^2+3 a^5 z+9 a^3 z+4 a z-5 z a^{-1} -3 z a^{-3} -a^4-3 a^2- a^{-2} -2-a^5 z^{-1} -2 a^3 z^{-1} -a z^{-1} + a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



