L11a302

From Knot Atlas
Revision as of 17:35, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11a301.gif

L11a301

L11a303.gif

L11a303

L11a302.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a302 at Knotilus!


Link Presentations

[edit Notes on L11a302's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X4,9,5,10 X16,6,17,5 X22,14,9,13 X20,16,21,15 X14,22,15,21 X18,8,19,7 X6,18,7,17 X8,20,1,19
Gauss code {1, -2, 3, -4, 5, -10, 9, -11}, {4, -1, 2, -3, 6, -8, 7, -5, 10, -9, 11, -7, 8, -6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a302 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -7 q^{9/2}+8 q^{7/2}-\frac{1}{q^{7/2}}-10 q^{5/2}+\frac{2}{q^{5/2}}+10 q^{3/2}-\frac{4}{q^{3/2}}+q^{15/2}-2 q^{13/2}+4 q^{11/2}-9 \sqrt{q}+\frac{6}{\sqrt{q}}} (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-4-3-2-101234567χ
16           1-1
14          1 1
12         31 -2
10        41  3
8       43   -1
6      64    2
4     44     0
2    56      -1
0   36       3
-2  13        -2
-4 13         2
-6 1          -1
-81           1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a301.gif

L11a301

L11a303.gif

L11a303