L11n116

From Knot Atlas
Revision as of 17:35, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n115.gif

L11n115

L11n117.gif

L11n117

L11n116.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n116 at Knotilus!


Link Presentations

[edit Notes on L11n116's Link Presentations]

Planar diagram presentation X6172 X7,17,8,16 X20,17,21,18 X18,13,19,14 X14,19,15,20 X4,21,1,22 X10,5,11,6 X12,3,13,4 X22,11,5,12 X2,9,3,10 X15,9,16,8
Gauss code {1, -10, 8, -6}, {7, -1, -2, 11, 10, -7, 9, -8, 4, -5, -11, 2, 3, -4, 5, -3, 6, -9}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n116 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^9 \left(-z^3\right)+a^9 z^{-1} +a^7 z^5-3 a^7 z-3 a^7 z^{-1} +2 a^5 z^5+5 a^5 z^3+6 a^5 z+4 a^5 z^{-1} -3 a^3 z^3-5 a^3 z-2 a^3 z^{-1} } (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-2         33
-4        41-3
-6       72 5
-8      64  -2
-10     87   1
-12    77    0
-14   47     -3
-16  37      4
-18 14       -3
-20 3        3
-221         -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-6}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{7}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n115.gif

L11n115

L11n117.gif

L11n117