L11n386

From Knot Atlas
Revision as of 17:35, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n385.gif

L11n385

L11n387.gif

L11n387

L11n386.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n386 at Knotilus!


Link Presentations

[edit Notes on L11n386's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X15,1,16,4 X5,12,6,13 X3849 X9,16,10,17 X17,19,18,22 X11,20,12,21 X19,10,20,11 X21,5,22,18 X2,14,3,13
Gauss code {1, -11, -5, 3}, {-9, 8, -10, 7}, {-4, -1, 2, 5, -6, 9, -8, 4, 11, -2, -3, 6, -7, 10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n386 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
3         22
1        1 -1
-1       62 4
-3      45  1
-5     52   3
-7    34    1
-9   35     -2
-11  13      2
-13 13       -2
-15 1        1
-171         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n385.gif

L11n385

L11n387.gif

L11n387