L11n274

From Knot Atlas
Revision as of 17:39, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n273.gif

L11n273

L11n275.gif

L11n275

L11n274.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n274 at Knotilus!


Link Presentations

[edit Notes on L11n274's Link Presentations]

Planar diagram presentation X6172 X5,12,6,13 X3849 X13,2,14,3 X14,7,15,8 X9,18,10,19 X17,11,18,22 X11,21,12,20 X21,17,22,16 X4,15,1,16 X19,10,20,5
Gauss code {1, 4, -3, -10}, {-2, -1, 5, 3, -6, 11}, {-8, 2, -4, -5, 10, 9, -7, 6, -11, 8, -9, 7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n274 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -4 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-10123χ
3         1-1
1        1 1
-1       21 -1
-3     131  1
-5     33   0
-7   142    1
-9  123     2
-11  43      1
-131 2       3
-1522        0
-171         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n273.gif

L11n273

L11n275.gif

L11n275