L11a388

From Knot Atlas
Revision as of 17:42, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11a387.gif

L11a387

L11a389.gif

L11a389

L11a388.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a388 at Knotilus!


Link Presentations

[edit Notes on L11a388's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X18,11,19,12 X22,15,9,16 X20,17,21,18 X16,21,17,22 X12,19,13,20 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 3, -4}, {11, -2, 5, -9, 4, -3, 6, -8, 7, -5, 9, -7, 8, -6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a388 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} -3 q^{-3} +7 q^{-4} -10 q^{-5} +16 q^{-6} -15 q^{-7} +16 q^{-8} -13 q^{-9} +10 q^{-10} -6 q^{-11} +2 q^{-12} - q^{-13} } (db)
Signature -4 (db)
HOMFLY-PT polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^{14} z^{-2} +3 a^{12} z^{-2} +4 a^{12}-6 a^{10} z^2-2 a^{10} z^{-2} -7 a^{10}+3 a^8 z^4+3 a^8 z^2-a^8 z^{-2} -a^8+3 a^6 z^4+5 a^6 z^2+a^6 z^{-2} +4 a^6+a^4 z^4+a^4 z^2} (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{15} z^7-5 a^{15} z^5+9 a^{15} z^3-7 a^{15} z+2 a^{15} z^{-1} +2 a^{14} z^8-7 a^{14} z^6+7 a^{14} z^4-2 a^{14} z^2-a^{14} z^{-2} +a^{14}+2 a^{13} z^9-a^{13} z^7-18 a^{13} z^5+36 a^{13} z^3-27 a^{13} z+8 a^{13} z^{-1} +a^{12} z^{10}+5 a^{12} z^8-22 a^{12} z^6+19 a^{12} z^4-7 a^{12} z^2-3 a^{12} z^{-2} +5 a^{12}+6 a^{11} z^9-6 a^{11} z^7-27 a^{11} z^5+49 a^{11} z^3-34 a^{11} z+10 a^{11} z^{-1} +a^{10} z^{10}+10 a^{10} z^8-28 a^{10} z^6+17 a^{10} z^4-5 a^{10} z^2-2 a^{10} z^{-2} +4 a^{10}+4 a^9 z^9+3 a^9 z^7-23 a^9 z^5+23 a^9 z^3-10 a^9 z+2 a^9 z^{-1} +7 a^8 z^8-7 a^8 z^6-4 a^8 z^4+9 a^8 z^2+a^8 z^{-2} -3 a^8+7 a^7 z^7-6 a^7 z^5-a^7 z^3+4 a^7 z-2 a^7 z^{-1} +6 a^6 z^6-8 a^6 z^4+8 a^6 z^2+a^6 z^{-2} -4 a^6+3 a^5 z^5-2 a^5 z^3+a^4 z^4-a^4 z^2} (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over ).   
\ r
  \  
j \
-11-10-9-8-7-6-5-4-3-2-10χ
-3           11
-5          31-2
-7         4  4
-9        63  -3
-11       104   6
-13      89    1
-15     87     1
-17    58      3
-19   58       -3
-21  15        4
-23 15         -4
-25 1          1
-271           -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-11}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-10}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-8} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{10}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-2}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a387.gif

L11a387

L11a389.gif

L11a389