L11a139

From Knot Atlas
Revision as of 17:45, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11a138.gif

L11a138

L11a140.gif

L11a140

L11a139.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a139 at Knotilus!


Link Presentations

[edit Notes on L11a139's Link Presentations]

Planar diagram presentation X8192 X10,4,11,3 X22,10,7,9 X2738 X4,15,5,16 X12,5,13,6 X16,12,17,11 X6,18,1,17 X14,20,15,19 X20,14,21,13 X18,21,19,22
Gauss code {1, -4, 2, -5, 6, -8}, {4, -1, 3, -2, 7, -6, 10, -9, 5, -7, 8, -11, 9, -10, 11, -3}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a139 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-10123456χ
14           11
12          3 -3
10         61 5
8        103  -7
6       126   6
4      1310    -3
2     1312     1
0    1014      4
-2   712       -5
-4  411        7
-6 16         -5
-8 4          4
-101           -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a138.gif

L11a138

L11a140.gif

L11a140