L11n446

From Knot Atlas
Revision as of 17:50, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n445.gif

L11n445

L11n447.gif

L11n447

L11n446.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n446 at Knotilus!


Link Presentations

[edit Notes on L11n446's Link Presentations]

Planar diagram presentation X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X18,12,19,11 X22,19,17,20 X16,21,9,22 X20,15,21,16 X12,18,13,17 X2536 X9,1,10,4
Gauss code {1, -10, -2, 11}, {10, -1, -3, 4}, {9, -5, 6, -8, 7, -6}, {-11, 2, 5, -9, -4, 3, 8, -7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n446 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-10123456χ
12           11
10            0
8         31 2
6       112  2
4       21   1
2     521    4
0    272     3
-2   113      3
-4  121       0
-6 11         0
-8 1          1
-101           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n445.gif

L11n445

L11n447.gif

L11n447