L11n48
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n48's Link Presentations]
Planar diagram presentation | X6172 X18,7,19,8 X19,1,20,4 X5,14,6,15 X3849 X9,16,10,17 X15,10,16,11 X11,20,12,21 X13,22,14,5 X21,12,22,13 X2,18,3,17 |
Gauss code | {1, -11, -5, 3}, {-4, -1, 2, 5, -6, 7, -8, 10, -9, 4, -7, 6, 11, -2, -3, 8, -10, 9} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{q^{3/2}}-\frac{2}{q^{7/2}}+\frac{2}{q^{9/2}}-\frac{3}{q^{11/2}}+\frac{2}{q^{13/2}}-\frac{2}{q^{15/2}}+\frac{2}{q^{17/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{21/2}}} (db) |
Signature | -3 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{12} z^6-5 a^{12} z^4+6 a^{12} z^2-2 a^{12}+a^{11} z^7-4 a^{11} z^5+2 a^{11} z^3+a^{11} z+a^{10} z^8-4 a^{10} z^6+2 a^{10} z^4+2 a^{10} z^2-a^{10}+a^9 z^9-6 a^9 z^7+13 a^9 z^5-15 a^9 z^3+8 a^9 z-2 a^9 z^{-1} +2 a^8 z^8-12 a^8 z^6+24 a^8 z^4-20 a^8 z^2+6 a^8+a^7 z^9-7 a^7 z^7+18 a^7 z^5-22 a^7 z^3+15 a^7 z-4 a^7 z^{-1} +a^6 z^8-7 a^6 z^6+17 a^6 z^4-15 a^6 z^2+5 a^6+a^5 z^5-4 a^5 z^3+5 a^5 z-a^5 z^{-1} +a^4 z^2-a^4+a^3 z^3-3 a^3 z+a^3 z^{-1} } (db) |
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|