L11n48

From Knot Atlas
Revision as of 17:54, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n47.gif

L11n47

L11n49.gif

L11n49

L11n48.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n48 at Knotilus!


Link Presentations

[edit Notes on L11n48's Link Presentations]

Planar diagram presentation X6172 X18,7,19,8 X19,1,20,4 X5,14,6,15 X3849 X9,16,10,17 X15,10,16,11 X11,20,12,21 X13,22,14,5 X21,12,22,13 X2,18,3,17
Gauss code {1, -11, -5, 3}, {-4, -1, 2, 5, -6, 7, -8, 10, -9, 4, -7, 6, 11, -2, -3, 8, -10, 9}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n48 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{1}{q^{3/2}}-\frac{2}{q^{7/2}}+\frac{2}{q^{9/2}}-\frac{3}{q^{11/2}}+\frac{2}{q^{13/2}}-\frac{2}{q^{15/2}}+\frac{2}{q^{17/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{21/2}}} (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{12} z^6-5 a^{12} z^4+6 a^{12} z^2-2 a^{12}+a^{11} z^7-4 a^{11} z^5+2 a^{11} z^3+a^{11} z+a^{10} z^8-4 a^{10} z^6+2 a^{10} z^4+2 a^{10} z^2-a^{10}+a^9 z^9-6 a^9 z^7+13 a^9 z^5-15 a^9 z^3+8 a^9 z-2 a^9 z^{-1} +2 a^8 z^8-12 a^8 z^6+24 a^8 z^4-20 a^8 z^2+6 a^8+a^7 z^9-7 a^7 z^7+18 a^7 z^5-22 a^7 z^3+15 a^7 z-4 a^7 z^{-1} +a^6 z^8-7 a^6 z^6+17 a^6 z^4-15 a^6 z^2+5 a^6+a^5 z^5-4 a^5 z^3+5 a^5 z-a^5 z^{-1} +a^4 z^2-a^4+a^3 z^3-3 a^3 z+a^3 z^{-1} } (db)

Khovanov Homology

The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-2         11
-4        121
-6       1 12
-8      22  0
-10     21   1
-12    131   1
-14   22     0
-16   11     0
-18 12       -1
-20          0
-221         -1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=-4}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-7}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-6} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n47.gif

L11n47

L11n49.gif

L11n49