L10n112
From Knot Atlas
Jump to navigationJump to search
|
|
(Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n112's Link Presentations]
Planar diagram presentation | X6172 X2536 X11,19,12,18 X3,11,4,10 X9,1,10,4 X7,15,8,14 X13,5,14,8 X15,17,16,20 X19,13,20,16 X17,9,18,12 |
Gauss code | {1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -3, 10}, {-7, 6, -8, 9}, {-10, 3, -9, 8} |
A Braid Representative | {{{braid_table}}} |
A Morse Link Presentation |
Polynomial invariants
Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , , , ...) | (db) |
Jones polynomial | (db) |
Signature | 2 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8 a^{-6} +z^8 a^{-8} +5 z^7 a^{-5} +6 z^7 a^{-7} +z^7 a^{-9} +10 z^6 a^{-4} +12 z^6 a^{-6} +3 z^6 a^{-8} +z^6 a^{-10} +6 z^5 a^{-3} -6 z^5 a^{-7} -25 z^4 a^{-4} -39 z^4 a^{-6} -19 z^4 a^{-8} -5 z^4 a^{-10} -10 z^3 a^{-3} -30 z^3 a^{-5} -30 z^3 a^{-7} -10 z^3 a^{-9} +10 z^2 a^{-2} +30 z^2 a^{-4} +40 z^2 a^{-6} +30 z^2 a^{-8} +10 z^2 a^{-10} +20 z a^{-3} +55 z a^{-5} +55 z a^{-7} +20 z a^{-9} -10 a^{-2} -25 a^{-4} -31 a^{-6} -25 a^{-8} -10 a^{-10} -15 a^{-3} z^{-1} -41 a^{-5} z^{-1} -41 a^{-7} z^{-1} -15 a^{-9} z^{-1} +5 a^{-2} z^{-2} +14 a^{-4} z^{-2} +18 a^{-6} z^{-2} +14 a^{-8} z^{-2} +5 a^{-10} z^{-2} +4 a^{-3} z^{-3} +12 a^{-5} z^{-3} +12 a^{-7} z^{-3} +4 a^{-9} z^{-3} - a^{-2} z^{-4} -4 a^{-4} z^{-4} -6 a^{-6} z^{-4} -4 a^{-8} z^{-4} - a^{-10} z^{-4} } (db) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over ). |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|