L11n303
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n303's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X13,21,14,20 X19,11,20,22 X15,5,16,10 X17,9,18,8 X7,17,8,16 X9,19,10,18 X21,15,22,14 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -7, 6, -8, 5}, {11, -2, -3, 9, -5, 7, -6, 8, -4, 3, -9, 4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-t(2)^2 t(3)^4+t(1) t(2)^2 t(3)^3-t(1) t(2) t(3)^3+t(2) t(3)^3-t(1) t(2)^2 t(3)^2+2 t(1) t(2) t(3)^2-2 t(2) t(3)^2+t(3)^2-t(1) t(2) t(3)+t(2) t(3)-t(3)+t(1)}{\sqrt{t(1)} t(2) t(3)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+2 q^7-3 q^6+4 q^5-4 q^4+4 q^3-2 q^2+2 q+1+ q^{-2} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^6 a^{-2} +z^6 a^{-4} -8 z^4 a^{-2} +6 z^4 a^{-4} -z^4 a^{-6} +z^4-19 z^2 a^{-2} +14 z^2 a^{-4} -3 z^2 a^{-6} +5 z^2-17 a^{-2} +13 a^{-4} -3 a^{-6} +7-5 a^{-2} z^{-2} +4 a^{-4} z^{-2} - a^{-6} z^{-2} +2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^8 a^{-2} +z^8 a^{-4} +z^8 a^{-6} +z^8+z^7 a^{-1} +2 z^7 a^{-3} +3 z^7 a^{-5} +2 z^7 a^{-7} -10 z^6 a^{-2} -6 z^6 a^{-4} -2 z^6 a^{-6} +2 z^6 a^{-8} -8 z^6-9 z^5 a^{-1} -16 z^5 a^{-3} -14 z^5 a^{-5} -6 z^5 a^{-7} +z^5 a^{-9} +31 z^4 a^{-2} +15 z^4 a^{-4} -z^4 a^{-6} -6 z^4 a^{-8} +21 z^4+22 z^3 a^{-1} +41 z^3 a^{-3} +26 z^3 a^{-5} +4 z^3 a^{-7} -3 z^3 a^{-9} -39 z^2 a^{-2} -16 z^2 a^{-4} +3 z^2 a^{-6} +3 z^2 a^{-8} -23 z^2-19 z a^{-1} -35 z a^{-3} -19 z a^{-5} -2 z a^{-7} +z a^{-9} +22 a^{-2} +13 a^{-4} - a^{-8} +11+5 a^{-1} z^{-1} +9 a^{-3} z^{-1} +5 a^{-5} z^{-1} + a^{-7} z^{-1} -5 a^{-2} z^{-2} -4 a^{-4} z^{-2} - a^{-6} z^{-2} -2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



