L11n449

From Knot Atlas
Revision as of 18:07, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

L11n448.gif

L11n448

L11n450.gif

L11n450

L11n449.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n449 at Knotilus!


Link Presentations

[edit Notes on L11n449's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X13,20,14,21 X16,12,17,11 X19,12,20,13 X8,16,5,15 X14,8,15,7 X22,17,19,18 X18,21,9,22 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {10, -1, 7, -6}, {-5, 3, 9, -8}, {11, -2, 4, 5, -3, -7, 6, -4, 8, -9}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n449 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-101χ
2         1-1
0        4 4
-2       54 -1
-4      321 2
-6     45   1
-8    53    2
-10   48     4
-12  11      0
-14  4       4
-1611        0
-181         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n448.gif

L11n448

L11n450.gif

L11n450