L11a155
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a155's Link Presentations]
| Planar diagram presentation | X8192 X10,3,11,4 X14,6,15,5 X20,11,21,12 X22,18,7,17 X18,22,19,21 X16,13,17,14 X12,19,13,20 X4,16,5,15 X2738 X6,9,1,10 |
| Gauss code | {1, -10, 2, -9, 3, -11}, {10, -1, 11, -2, 4, -8, 7, -3, 9, -7, 5, -6, 8, -4, 6, -5} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1) t(2)^4-t(2)^4+t(1)^2 t(2)^3-7 t(1) t(2)^3+5 t(2)^3-5 t(1)^2 t(2)^2+13 t(1) t(2)^2-5 t(2)^2+5 t(1)^2 t(2)-7 t(1) t(2)+t(2)-t(1)^2+t(1)}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{7/2}+3 q^{5/2}-7 q^{3/2}+11 \sqrt{q}-\frac{15}{\sqrt{q}}+\frac{17}{q^{3/2}}-\frac{17}{q^{5/2}}+\frac{14}{q^{7/2}}-\frac{11}{q^{9/2}}+\frac{6}{q^{11/2}}-\frac{3}{q^{13/2}}+\frac{1}{q^{15/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^7+2 z^3 a^5+z a^5+a^5 z^{-1} -z^5 a^3-2 z a^3-2 a^3 z^{-1} -z^5 a+z^3 a+2 z a+2 a z^{-1} +2 z^3 a^{-1} - a^{-1} z^{-1} -z a^{-3} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^4 z^{10}-a^2 z^{10}-3 a^5 z^9-6 a^3 z^9-3 a z^9-4 a^6 z^8-7 a^4 z^8-8 a^2 z^8-5 z^8-3 a^7 z^7+a^5 z^7+5 a^3 z^7-4 a z^7-5 z^7 a^{-1} -a^8 z^6+9 a^6 z^6+19 a^4 z^6+17 a^2 z^6-3 z^6 a^{-2} +5 z^6+9 a^7 z^5+12 a^5 z^5+10 a^3 z^5+16 a z^5+8 z^5 a^{-1} -z^5 a^{-3} +3 a^8 z^4-4 a^6 z^4-14 a^4 z^4-13 a^2 z^4+5 z^4 a^{-2} -z^4-8 a^7 z^3-15 a^5 z^3-18 a^3 z^3-18 a z^3-5 z^3 a^{-1} +2 z^3 a^{-3} -2 a^8 z^2+3 a^4 z^2+4 a^2 z^2-2 z^2 a^{-2} +z^2+3 a^7 z+7 a^5 z+10 a^3 z+10 a z+3 z a^{-1} -z a^{-3} -a^2-a^5 z^{-1} -2 a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



