L11n244
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n244's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X10,11,1,12 X5,15,6,14 X9,19,10,18 X17,3,18,2 X7,16,8,17 X3849 X15,20,16,21 X22,13,11,14 X19,4,20,5 X21,7,22,6 |
| Gauss code | {1, 5, -7, 10, -3, 11, -6, 7, -4, -2}, {2, -1, 9, 3, -8, 6, -5, 4, -10, 8, -11, -9} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ 0 }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{9/2}}+\frac{1}{q^{7/2}}-q^{5/2}-\frac{1}{q^{5/2}}+2 q^{3/2}-\frac{1}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}-2 \sqrt{q} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^5+2 z a^5-z^5 a^3-5 z^3 a^3-6 z a^3+z^5 a+5 z^3 a+6 z a+a z^{-1} -z^3 a^{-1} -2 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^3 z^9-a z^9-a^4 z^8-3 a^2 z^8-2 z^8-a^5 z^7+4 a^3 z^7+4 a z^7-z^7 a^{-1} -2 a^6 z^6+5 a^4 z^6+18 a^2 z^6+11 z^6-a^7 z^5+5 a^5 z^5+5 a^3 z^5+4 a z^5+5 z^5 a^{-1} +8 a^6 z^4-2 a^4 z^4-24 a^2 z^4-14 z^4+3 a^7 z^3-5 a^5 z^3-21 a^3 z^3-19 a z^3-6 z^3 a^{-1} -4 a^6 z^2-4 a^4 z^2+4 a^2 z^2+4 z^2+4 a^5 z+12 a^3 z+12 a z+4 z a^{-1} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



