L11n226
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n226's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X18,11,19,12 X6,9,7,10 X7,21,8,20 X19,1,20,8 X22,15,9,16 X3,12,4,13 X16,6,17,5 X13,4,14,5 X14,21,15,22 X2,18,3,17 |
| Gauss code | {1, -11, -7, 9, 8, -3, -4, 5}, {3, -1, 2, 7, -9, -10, 6, -8, 11, -2, -5, 4, 10, -6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (u+1)^2 (v-1)}{u^{3/2} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{1}{q^{13/2}}-\sqrt{q} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^7-z a^5-a^5 z^{-1} +z^5 a^3+5 z^3 a^3+6 z a^3+3 a^3 z^{-1} -z^3 a-4 z a-2 a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^8 z^6-5 a^8 z^4+5 a^8 z^2+a^7 z^7-6 a^7 z^5+9 a^7 z^3-2 a^7 z-a^6 z^2+a^6-a^5 z^3+2 a^5 z-a^5 z^{-1} -a^4 z^6+6 a^4 z^4-10 a^4 z^2+3 a^4-a^3 z^7+7 a^3 z^5-15 a^3 z^3+11 a^3 z-3 a^3 z^{-1} +a^2 z^4-4 a^2 z^2+3 a^2+a z^5-5 a z^3+7 a z-2 a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



