L10n73

From Knot Atlas
Revision as of 02:10, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10n72.gif

L10n72

L10n74.gif

L10n74

L10n73.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n73 at Knotilus!


Link Presentations

[edit Notes on L10n73's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X7,17,8,16 X20,9,11,10 X18,12,19,11 X15,9,16,8 X10,19,5,20 X17,14,18,15 X2536 X4,14,1,13
Gauss code {1, -9, 2, -10}, {9, -1, -3, 6, 4, -7}, {5, -2, 10, 8, -6, 3, -8, -5, 7, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n73 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{(u-1) (v+w-1) (v w-v-w)}{\sqrt{u} v w} }[/math] (db)
Jones polynomial [math]\displaystyle{ -q^5+3 q^4-4 q^3- q^{-3} +6 q^2+4 q^{-2} -6 q-4 q^{-1} +7 }[/math] (db)
Signature 0 (db)
HOMFLY-PT polynomial [math]\displaystyle{ z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -z^2 a^{-4} +a^2+ a^{-2} -2+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ z^5 a^{-5} -2 z^3 a^{-5} +3 z^6 a^{-4} -8 z^4 a^{-4} +4 z^2 a^{-4} +3 z^7 a^{-3} -7 z^5 a^{-3} +a^3 z^3+3 z^3 a^{-3} +z^8 a^{-2} +2 z^6 a^{-2} +4 a^2 z^4-8 z^4 a^{-2} -3 a^2 z^2+5 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -2 a^2-2 a^{-2} +a z^7+4 z^7 a^{-1} -8 z^5 a^{-1} +a z^3+5 z^3 a^{-1} +2 a z+2 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +z^8-z^6+4 z^4-2 z^2+2 z^{-2} -3 }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-3-2-1012345χ
11        1-1
9       2 2
7      21 -1
5     42  2
3    33   0
1   43    1
-1  25     3
-3 22      0
-5 3       3
-71        -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n72.gif

L10n72

L10n74.gif

L10n74