L10n73
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n73's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X7,17,8,16 X20,9,11,10 X18,12,19,11 X15,9,16,8 X10,19,5,20 X17,14,18,15 X2536 X4,14,1,13 |
| Gauss code | {1, -9, 2, -10}, {9, -1, -3, 6, 4, -7}, {5, -2, 10, 8, -6, 3, -8, -5, 7, -4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v+w-1) (v w-v-w)}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^5+3 q^4-4 q^3- q^{-3} +6 q^2+4 q^{-2} -6 q-4 q^{-1} +7 }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^4 a^{-2} +z^4-a^2 z^2+z^2 a^{-2} -z^2 a^{-4} +a^2+ a^{-2} -2+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-5} -2 z^3 a^{-5} +3 z^6 a^{-4} -8 z^4 a^{-4} +4 z^2 a^{-4} +3 z^7 a^{-3} -7 z^5 a^{-3} +a^3 z^3+3 z^3 a^{-3} +z^8 a^{-2} +2 z^6 a^{-2} +4 a^2 z^4-8 z^4 a^{-2} -3 a^2 z^2+5 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -2 a^2-2 a^{-2} +a z^7+4 z^7 a^{-1} -8 z^5 a^{-1} +a z^3+5 z^3 a^{-1} +2 a z+2 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +z^8-z^6+4 z^4-2 z^2+2 z^{-2} -3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



