L11a83

From Knot Atlas
Revision as of 02:11, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a82.gif

L11a82

L11a84.gif

L11a84

L11a83.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a83 at Knotilus!


Link Presentations

[edit Notes on L11a83's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X16,8,17,7 X20,10,21,9 X22,18,5,17 X18,22,19,21 X8,20,9,19 X14,12,15,11 X10,16,11,15 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 3, -7, 4, -9, 8, -2, 11, -8, 9, -3, 5, -6, 7, -4, 6, -5}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11a83 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(4 t(2)^2-5 t(2)+4\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{21/2}-4 q^{19/2}+8 q^{17/2}-11 q^{15/2}+15 q^{13/2}-17 q^{11/2}+16 q^{9/2}-14 q^{7/2}+9 q^{5/2}-6 q^{3/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}} }[/math] (db)
Signature 3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ z^3 a^{-9} -z^5 a^{-7} +2 z a^{-7} + a^{-7} z^{-1} -2 z^5 a^{-5} -4 z^3 a^{-5} -4 z a^{-5} -2 a^{-5} z^{-1} -z^5 a^{-3} -z^3 a^{-3} +z^3 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ z^6 a^{-12} -2 z^4 a^{-12} +z^2 a^{-12} +4 z^7 a^{-11} -10 z^5 a^{-11} +5 z^3 a^{-11} +6 z^8 a^{-10} -15 z^6 a^{-10} +8 z^4 a^{-10} +4 z^9 a^{-9} -4 z^7 a^{-9} -6 z^5 a^{-9} +3 z^3 a^{-9} +z^{10} a^{-8} +8 z^8 a^{-8} -19 z^6 a^{-8} +5 z^4 a^{-8} +6 z^2 a^{-8} -2 a^{-8} +6 z^9 a^{-7} -6 z^7 a^{-7} -6 z^5 a^{-7} +10 z^3 a^{-7} -4 z a^{-7} + a^{-7} z^{-1} +z^{10} a^{-6} +5 z^8 a^{-6} -5 z^6 a^{-6} -7 z^4 a^{-6} +13 z^2 a^{-6} -5 a^{-6} +2 z^9 a^{-5} +5 z^7 a^{-5} -14 z^5 a^{-5} +15 z^3 a^{-5} -7 z a^{-5} +2 a^{-5} z^{-1} +3 z^8 a^{-4} -5 z^4 a^{-4} +6 z^2 a^{-4} -3 a^{-4} +3 z^7 a^{-3} -3 z^5 a^{-3} +2 z^6 a^{-2} -3 z^4 a^{-2} + a^{-2} +z^5 a^{-1} -3 z^3 a^{-1} +3 z a^{-1} - a^{-1} z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-2-10123456789χ
22           1-1
20          3 3
18         51 -4
16        63  3
14       95   -4
12      86    2
10     89     1
8    68      -2
6   38       5
4  36        -3
2 15         4
0 1          -1
-21           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=2 }[/math] [math]\displaystyle{ i=4 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a82.gif

L11a82

L11a84.gif

L11a84