L11a132
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a132's Link Presentations]
| Planar diagram presentation | X6172 X14,4,15,3 X22,8,5,7 X20,10,21,9 X18,12,19,11 X16,14,17,13 X12,18,13,17 X10,20,11,19 X8,22,9,21 X2536 X4,16,1,15 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 4, -8, 5, -7, 6, -2, 11, -6, 7, -5, 8, -4, 9, -3} |
| A Braid Representative | ||||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{4 (u-1) (v-1)}{\sqrt{u} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -4 q^{9/2}+4 q^{7/2}-4 q^{5/2}+3 q^{3/2}-\frac{1}{q^{3/2}}+q^{19/2}-2 q^{17/2}+2 q^{15/2}-3 q^{13/2}+4 q^{11/2}-3 \sqrt{q}+\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^3 a^{-1} -z^3 a^{-3} -z^3 a^{-5} -z^3 a^{-7} +a z-z a^{-1} -z a^{-7} +z a^{-9} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^8 a^{-10} -6 z^6 a^{-10} +10 z^4 a^{-10} -4 z^2 a^{-10} +2 z^9 a^{-9} -13 z^7 a^{-9} +26 z^5 a^{-9} -17 z^3 a^{-9} +2 z a^{-9} +z^{10} a^{-8} -5 z^8 a^{-8} +6 z^6 a^{-8} -z^4 a^{-8} +3 z^9 a^{-7} -17 z^7 a^{-7} +29 z^5 a^{-7} -17 z^3 a^{-7} +2 z a^{-7} +z^{10} a^{-6} -5 z^8 a^{-6} +9 z^6 a^{-6} -10 z^4 a^{-6} +4 z^2 a^{-6} +z^9 a^{-5} -3 z^7 a^{-5} +z^5 a^{-5} +z^8 a^{-4} -2 z^6 a^{-4} +z^7 a^{-3} -z^5 a^{-3} +z^6 a^{-2} +z^5 a^{-1} +a z^3+z^3 a^{-1} -2 a z-2 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +z^4-1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



