L11a136
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a136's Link Presentations]
| Planar diagram presentation | X6172 X2,9,3,10 X14,3,15,4 X10,5,11,6 X22,11,5,12 X20,13,21,14 X12,21,13,22 X4,19,1,20 X18,16,19,15 X16,8,17,7 X8,18,9,17 |
| Gauss code | {1, -2, 3, -8}, {4, -1, 10, -11, 2, -4, 5, -7, 6, -3, 9, -10, 11, -9, 8, -6, 7, -5} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{3 t(1) t(2)^3-4 t(2)^3-8 t(1) t(2)^2+10 t(2)^2+10 t(1) t(2)-8 t(2)-4 t(1)+3}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{5/2}-4 q^{3/2}+7 \sqrt{q}-\frac{11}{\sqrt{q}}+\frac{14}{q^{3/2}}-\frac{16}{q^{5/2}}+\frac{15}{q^{7/2}}-\frac{13}{q^{9/2}}+\frac{9}{q^{11/2}}-\frac{6}{q^{13/2}}+\frac{3}{q^{15/2}}-\frac{1}{q^{17/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^7+z a^7+a^7 z^{-1} -z^5 a^5-2 z^3 a^5-4 z a^5-2 a^5 z^{-1} -z^5 a^3+z^3 a^3+3 z a^3+2 a^3 z^{-1} -z^5 a-z^3 a-2 z a-a z^{-1} +z^3 a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^9 z^7-4 a^9 z^5+4 a^9 z^3-a^9 z+3 a^8 z^8-12 a^8 z^6+13 a^8 z^4-5 a^8 z^2+4 a^7 z^9-15 a^7 z^7+16 a^7 z^5-8 a^7 z^3+3 a^7 z-a^7 z^{-1} +2 a^6 z^{10}-20 a^6 z^6+27 a^6 z^4-9 a^6 z^2+10 a^5 z^9-36 a^5 z^7+43 a^5 z^5-24 a^5 z^3+9 a^5 z-2 a^5 z^{-1} +2 a^4 z^{10}+5 a^4 z^8-28 a^4 z^6+29 a^4 z^4-6 a^4 z^2-a^4+6 a^3 z^9-12 a^3 z^7+11 a^3 z^5-11 a^3 z^3+8 a^3 z-2 a^3 z^{-1} +8 a^2 z^8-13 a^2 z^6+7 a^2 z^4+z^4 a^{-2} -2 a^2 z^2+8 a z^7-8 a z^5+4 z^5 a^{-1} -2 a z^3-3 z^3 a^{-1} +3 a z-a z^{-1} +7 z^6-7 z^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



