L10a156
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a156's Link Presentations]
| Planar diagram presentation | X8192 X18,10,19,9 X6,18,1,17 X16,7,17,8 X10,4,11,3 X14,6,15,5 X4,14,5,13 X20,11,13,12 X12,15,7,16 X2,19,3,20 |
| Gauss code | {1, -10, 5, -7, 6, -3}, {4, -1, 2, -5, 8, -9}, {7, -6, 9, -4, 3, -2, 10, -8} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(3)-1) (-t(2) t(1)+t(2) t(3) t(1)+t(1)+t(2)-1) (-t(1) t(3)+t(1) t(2) t(3)-t(2) t(3)+t(3)-1)}{t(1) t(2) t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^5- q^{-5} +4 q^4+4 q^{-4} -8 q^3-8 q^{-3} +13 q^2+13 q^{-2} -15 q-15 q^{-1} +18 }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^8-a^2 z^6-z^6 a^{-2} +5 z^6-3 a^2 z^4-3 z^4 a^{-2} +8 z^4-2 a^2 z^2-2 z^2 a^{-2} +3 z^2+a^2+ a^{-2} -2+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^5 z^5+z^5 a^{-5} -a^5 z^3-z^3 a^{-5} +4 a^4 z^6+4 z^6 a^{-4} -6 a^4 z^4-6 z^4 a^{-4} +2 a^4 z^2+2 z^2 a^{-4} +7 a^3 z^7+7 z^7 a^{-3} -11 a^3 z^5-11 z^5 a^{-3} +4 a^3 z^3+4 z^3 a^{-3} +7 a^2 z^8+7 z^8 a^{-2} -9 a^2 z^6-9 z^6 a^{-2} +2 a^2 z^4+2 z^4 a^{-2} +a^2 z^2+z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -2 a^2-2 a^{-2} +3 a z^9+3 z^9 a^{-1} +7 a z^7+7 z^7 a^{-1} -19 a z^5-19 z^5 a^{-1} +9 a z^3+9 z^3 a^{-1} +2 a z+2 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +14 z^8-26 z^6+16 z^4-2 z^2+2 z^{-2} -3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



