L11a40
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a40's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,10,13,9 X18,15,19,16 X16,7,17,8 X8,17,9,18 X22,20,5,19 X20,14,21,13 X14,22,15,21 X2536 X4,12,1,11 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 5, -6, 3, -2, 11, -3, 8, -9, 4, -5, 6, -4, 7, -8, 9, -7} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1)^5}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{13/2}+4 q^{11/2}-8 q^{9/2}+14 q^{7/2}-19 q^{5/2}+20 q^{3/2}-21 \sqrt{q}+\frac{17}{\sqrt{q}}-\frac{13}{q^{3/2}}+\frac{7}{q^{5/2}}-\frac{3}{q^{7/2}}+\frac{1}{q^{9/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^7 a^{-1} +2 a z^5-4 z^5 a^{-1} +2 z^5 a^{-3} -a^3 z^3+6 a z^3-9 z^3 a^{-1} +5 z^3 a^{-3} -z^3 a^{-5} -2 a^3 z+8 a z-10 z a^{-1} +5 z a^{-3} -z a^{-5} -a^3 z^{-1} +4 a z^{-1} -4 a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-7} -z^3 a^{-7} +4 z^6 a^{-6} -6 z^4 a^{-6} +3 z^2 a^{-6} +7 z^7 a^{-5} -10 z^5 a^{-5} +6 z^3 a^{-5} -2 z a^{-5} +7 z^8 a^{-4} +a^4 z^6-3 z^6 a^{-4} -3 a^4 z^4-10 z^4 a^{-4} +3 a^4 z^2+9 z^2 a^{-4} -a^4- a^{-4} +4 z^9 a^{-3} +3 a^3 z^7+10 z^7 a^{-3} -8 a^3 z^5-31 z^5 a^{-3} +8 a^3 z^3+26 z^3 a^{-3} -4 a^3 z-10 z a^{-3} +a^3 z^{-1} + a^{-3} z^{-1} +z^{10} a^{-2} +4 a^2 z^8+14 z^8 a^{-2} -5 a^2 z^6-21 z^6 a^{-2} -5 a^2 z^4-3 z^4 a^{-2} +10 a^2 z^2+13 z^2 a^{-2} -4 a^2-4 a^{-2} +3 a z^9+7 z^9 a^{-1} +5 a z^7+5 z^7 a^{-1} -26 a z^5-38 z^5 a^{-1} +29 a z^3+40 z^3 a^{-1} -15 a z-19 z a^{-1} +4 a z^{-1} +4 a^{-1} z^{-1} +z^{10}+11 z^8-20 z^6-z^4+14 z^2-7 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



